Peat free growing media

A Supplier's Perspective

RHS Workshop 6th March 2024

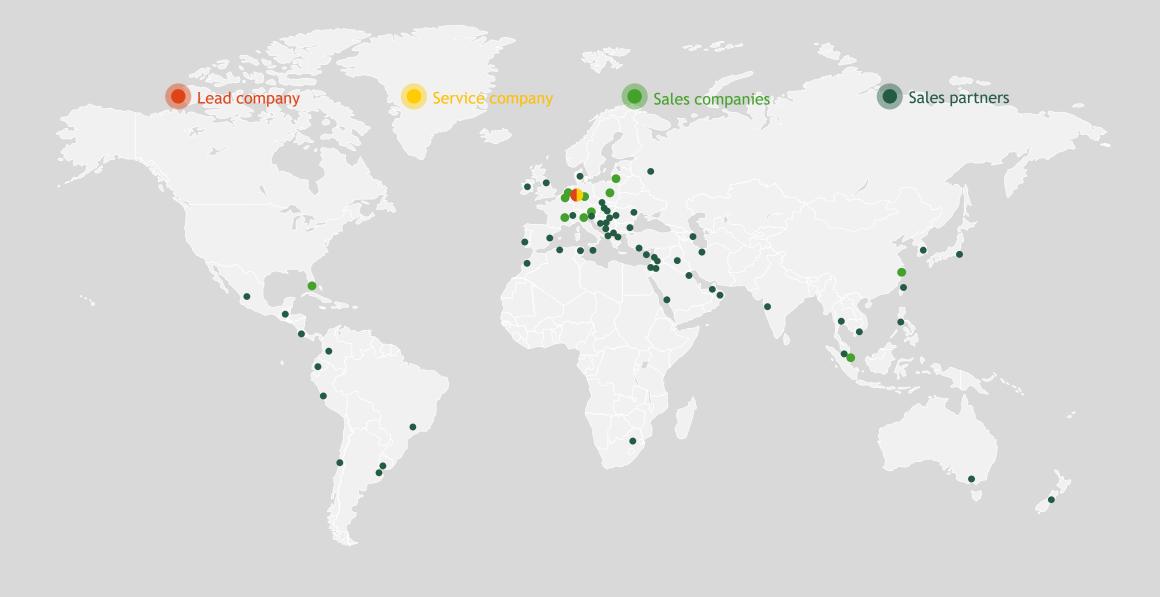
Paul Hogben UK Sales Manager

Agenda

01

Klasmann-Deilmann Expertise in substrates since 1913

02


Current and future Raw Materials

03 Raw Materials in Detail

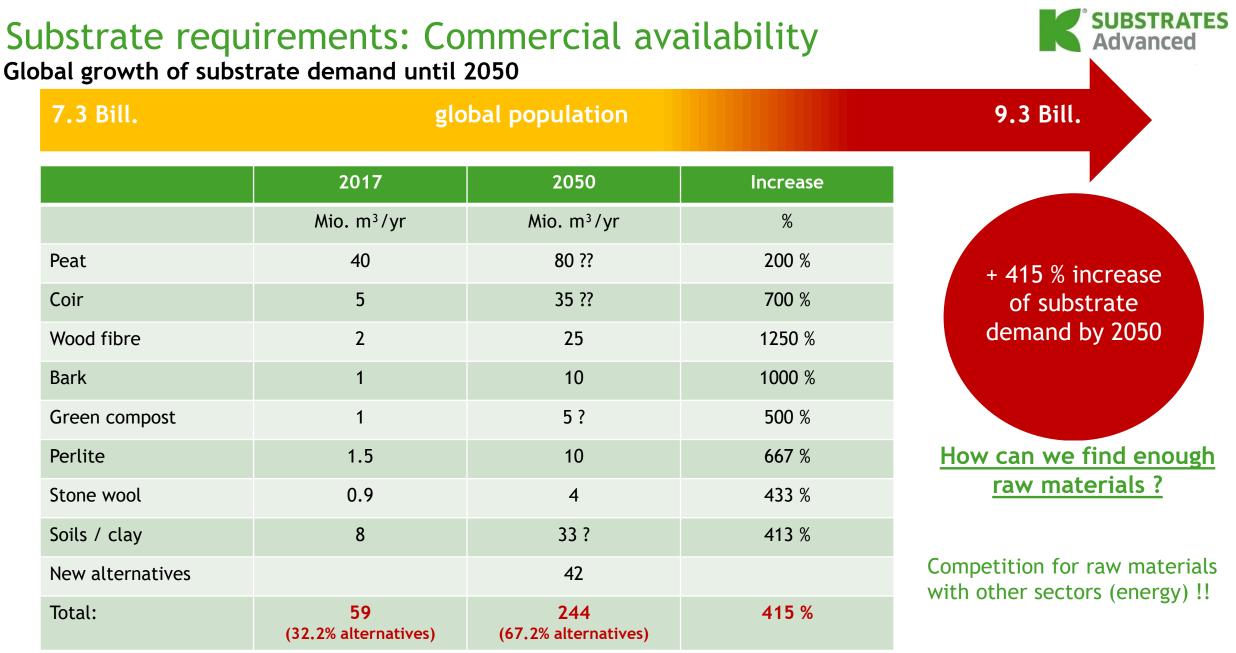
04

The Optimum Growing Media

Klasmann-Deilmann: corporate structure

Klasmann-Deilmann: Substrate Supply 2023

= 3.95 mio. cbm substrate


531. Lan

法非法法

行法法法法

(of which 0.96 mio. cbm alternatives = 24.3%)

and the second

Source: Prof. Chris Blok, "Reflections on circular horticulture in the period 2020-2050", Wageningen University, The Netherlands, 2019

<u>02</u>

Current and future raw materials and assessment

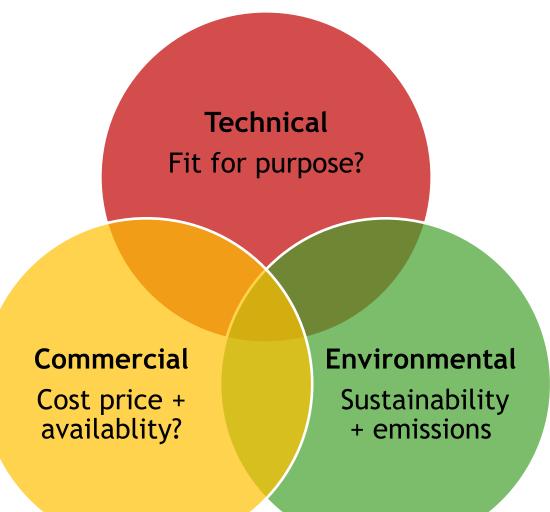
Suitable constituents for peat free / peat reduced mixes

Organic materials	Mineral materials
Coir, washed / buffered (SA8000 certif.)	Perlite
Coir (Eco) (SA8000 certif.)	Clay granules / milled clay
Coco fibers (SA8000 certif.)	Vermiculite
Coco chips / crush (SA8000 certif.)	Pumicestone
Wood fibre	Expanded clay, crushed
Green compost	Sand, washed
Potting bark	
Composted bark	

New constituents - what's on the radar?

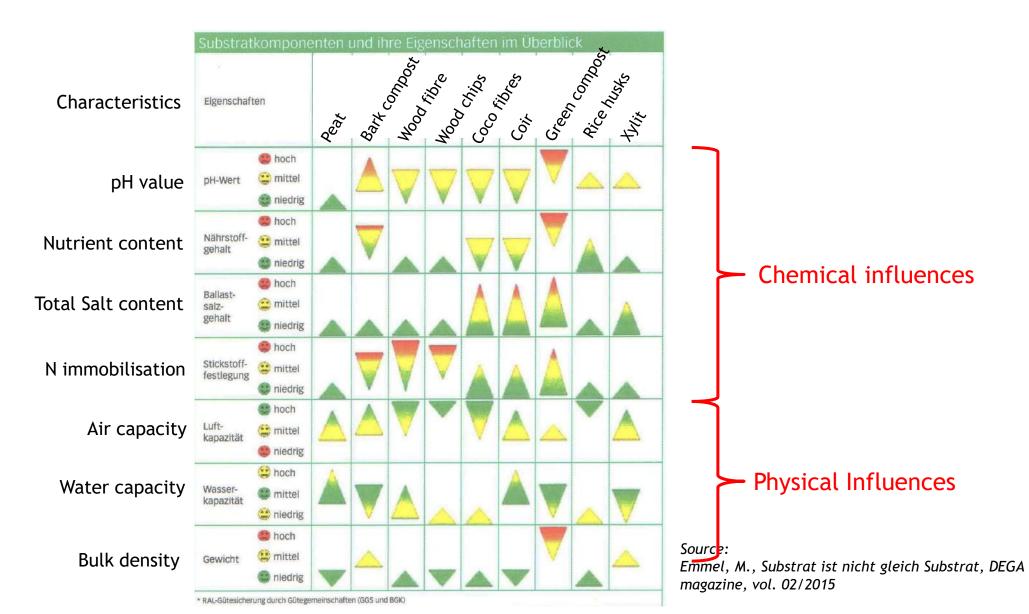
Tested constituent	Limitation
Rice husks	Availability, price, weed issues, transport (LCA), growth issues due to phenols (e.g. Saintpaulia, Begonia)
Flax rasps	N-fixation issues, weed issues,
Rockwool	Price, energy intense (LCA)
Digestates	Inhomogeneity, human pathogen issues, local availability, herbicide residues, mould
Biochar	Limited availability, price, weight, energy intense (LCA)
Plant fibres (e.g. flax, reed, Silver grass, hemp bred)	Still limited availability, N-fixation issues, weed issues, shrinkage
Sphagnum moss	Harvesting technique, weeds, limited availability, price
Xylit (young brown coal)	Limited availability, weight
Cork granules	Limited availability, price
Native / biobased polymers	Price, technology

New constituents - what's on the Distant Horizon?



 \Rightarrow Ongoing research in various countries and companies \Rightarrow KD itself has 60+ materials in test in its own Incubator \Rightarrow Still: no direct alternative to peat has been found for various reasons

Requirements of growing media

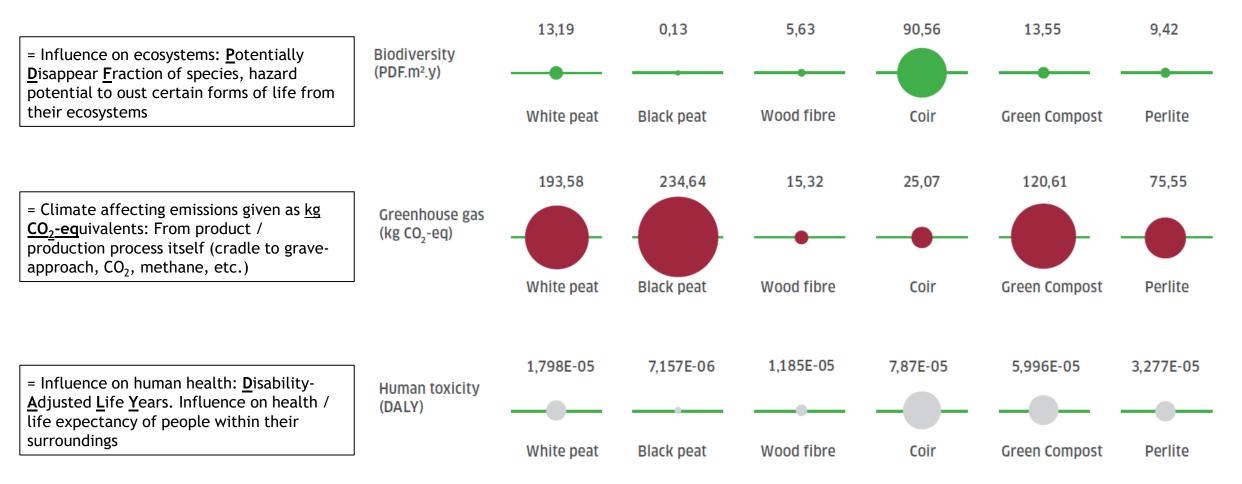


Today 3 areas for substrate performance:

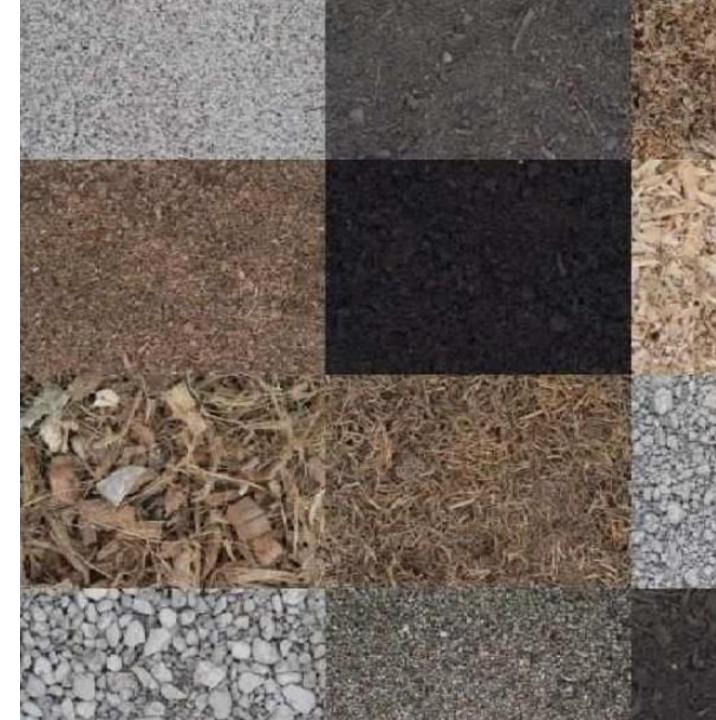
Evaluation matrix for constituents [Technical dimension]

Evaluation matrix for constituents [Risk factors]

- Critical salts
- Heavy metals
- > Human pathogens
- Unspecific toxic effects
- > Chemical residues, e.g. herbicides
- > Microbiological activity/shelf life
- > Increased attractiveness for saprophytic fungi (wood digester), Sciarid flies
- ➤ Weeds
- Image/aversion to green compost



Substrate requirements: Environmentally


LCA for different constituents

* all data are based on the ,cradle to grave'-approach including final use

Sources: LCA 2011 per Quantis Suite 2.0; Klasmann-Deilmann Sustainability Report 2012 GHG Balance 2016; Klasmann-Deilmann Sustainability Report 2016

Raw Materials in Detail

Coir pith

ADVANTAGES

- Known raw material in horticulture
- Best water retention of all non-peat-materials
- Suitable air capacity
- Reliable drainage
- Easy rewetting
- Easy handling in substrates

To be considered:

- Salinity
- Potassium
- pH levels from 5.5 6.0
- Water consumption for processing (washing / buffering)
- Transport overseas
- High price (today 70 € +)
- Ethical concerns

Possible share in growing media

100%

Coco fibre and chips

ADVANTAGES

- Known raw material in horticulture
- Air capacity
- Drainage
- Good re-wetting
- Structural stability

To be considered:

- Salinity, Chips accumulate salts
- High / varying pH levels
- Low water retention
- High price (today 70 € +)

Possible share in growing media

100%

Woodfibre

ADVANTAGES

- High air capacity
- Excellent drainage
- Easy rewetting
- Good structural stability
- pH 5.0
- EC very low
- NKP, micro elements very low
- Phytosanitary safe
- Low weight
- Approval for organic cultivation

10-40%

Possible share in growing media

- Only fresh wood shavings
- Only soft wood species (conifers)
- Low buffer (pH, nutrients)
- N-immobilisation
- Wood chip prices are depending on the engergy sector

Perlite

ADVANTAGES

- Known raw material in horticulture
- High air capacity
- Excellent drainage
- Easy rewetting
- High structural stability
- pH neutral
- EC low
- Phytosanitary safe
- Low weight

Possible share in growing media

10-30%

- Price
- No water buffer
- no nutrient buffer
- No microbial life

Clay

ADVANTAGES

- Nutrient buffer
- Improves water distibution and thus water availability
- Can support substrate structure
- Binder in press pots and plugs

Proportion in growing media

- Only additive, not constituent
- Different applications need different clay types
- Extra costs
- Weight
- Requires heat treatment
- Must be low in Carbonates
- Salinity
- Heavy metals

Composted bark

ADVANTAGES

- P and K supply
- pH 5.5
- Low salinity
- Trace element supply
- Chemical buffer (pH, nutrients)
- Suppressive effect on plant pathogens
- Microbial life
- Structural stability

Possible share in growing media

10-40 %

- Choose the right input
- Composting process is crucial
- Extensive test program
- Heavy
- Lower air capacity
- N-Immobilisation
- Herbicide residues
- In demand by the energy industry

Green compost

ADVANTAGES

- Suppressive effect on plant pathogens
- P and K supply
- Trace element supply
- Good chemical buffer (pH, nutrients)
- Microbial life

5-30 %

- Organic cultivation

Possible share in growing media

- Choose the right input (only selected green residues)
- Composting process is crucial
- Extensive test program
- High pH 7.5 8.5
- Salinity (Na, Cl)
- N-Immobilisation
- Heavy
- Low air capacity
- Herbicide residues
- RAL WRAP Quality accredition

Digestates

ADVANTAGES

- Low Price
- Supplies P & K
- Structure material
- Moderate water capacity
- Low weight
- Currently large volume (but: for soil improvement in agriculture)
- With composting processes can be made more homogenous

DISADVANTAGES

- Inconsistent batches
- Requires composting
- Issues with growth hormone herbicide residues
- Strong N-fixation
- Fungal growth during storage
- Strong smell possible
- RHP approval not possible
- No reliable delivery infrastruture
- Local material

Possible share in growing media

Sheep wool

ADVANTAGES

- Circular economy
- Organic "waste" material
- Light weight
- Low price
- Slow-release nutrient release (N)
- Good availability in UK

DISADVANTAGES

- Local availability
- "Organic fertiliser" (N)
- Requires heat treatment
- Mix homogeneity
- No RHP quality management
- Sciara attractivity
- Risks for mould
- Human pathogen risks
- Water repellent (natural oils)

Possible share in growing media

Rice husks

ADVANTAGES

- High air capacity
- Drainage
- Low weight
- Good structural stability

DISADVANTAGES

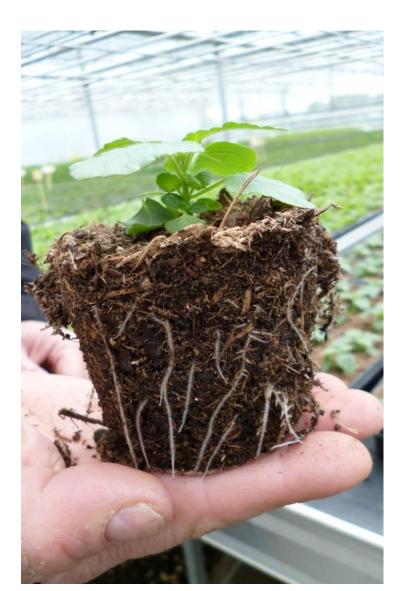
- Availability
- Price
- No water buffer
- Nitrogen consumption
- Very viable rice seeds / quality management

Possible share in growing media

04 The optimum growing media

Raw materials and judgement (Overview)

	Price level					Possible sha	re in growing media	1		we make it gro
Peat	Peat level	x 2	x 3	x 4	x 6+	0%	25%	50%	75%	100%
Coir pith	-									
Coir Fibre	-									
Wood Fibre	-									
Perlite	-							➡		
Green Compos	st									
Bark	-									
Digestates	_									
Clay						•				
Sheep wool	_			-						


Raw material Structure - Grades

Physical Characteristics (DIN EN 13041)		Chemical Characteristics	
Density, dry	70 - 80 g/l	pH-level (H ₂ O)	5.0
Pore volume	95 Vol%	Salt content	< 150 mg/l
Air capacity (pF 1,0)	60 - 65 Vol%	Nitrogen	< 15 mg/l
Water capacity (pF 1,0)	25 - 30 Vol%	Phosphate	< 30 mg/l
Shrinkage	< 5 %	Potassium	50 - 80 mg/l
		Magnesium	< 25 mg/l

Raw Material Chemical Attributes

- N P K and Micro Nutrients consider that supplied in the raw materials
- pH high starting point 6-6.5
- Leaching maintain an optimum watering regime
- Avoid polluting

Thank you for your attention.

Klasmann-Deilmann Service GmbH www.klasmann-deilmann.com

