

Management of crop nutrition

Adapting to sustainable growing media

Andrew Wilson
TECHNICAL MANAGER – ICL
Professional Horticulture- Growing
Solutions

Sustainable growing media Physical properties

Water holding (WH) and Air Filled Porosity (AFP)

-Balance is essential to achieving a mix suitable for nursery plants

Peat reduction of 40% can be achieved by adding one raw material eg woodfibre.

To go further and achieve peat free involves mixing several raw materials with different particle sizes for optimum air / water balance.

Water Holding Capacity / Air Filled Porosity 50.00% 45.00% 40.00% 35.00% Air Filled Porosity Rapid Method 30.00% 52.00% В F 15.00% 10.00% 5.00%

55

Water Holding Capacity Rapid Method

50

60

65

70

75

0.00%

35

40

45

Nutrients and Sustainable growing media

Peat alternatives generally require additional nutrients due to:

- Lower buffering capacity meaning nutrients are more easily leached;
- Lower water holding capacity with more frequent watering;
- Nitrogen lockup from woody materials

Cation Exchange Capacity

What effect does it have?

The cation exchange capacity helps to regulate the supply of certain nutrients, such as Ca²⁺, Mg²⁺, K+, NH⁴⁺ and Na+. CEC also affects the regulation of pH. Growing media with a high CEC will recover more quickly from acidification compared with a media with a low CEC.

Low CEC: The media lack the ability to hold on to cations, resulting in nutrient leaching and deficiencies particularly in Potassium K+ and Magnesium Mg².

Effect: More applied nutrients in solution and greater leaching

Water soluble fertilizers easily leached,

Controlled release products much less so.

Less pH Stability, Water Quality more important eg Hardness

Optimising plant quality in Sustainable Growing Media mixes

Water Quality

Increasingly important with Sustainable growing media

Taken into account in nutrient plan

Soft or Hard water

Water Quality for Healthy Plant Growth

Water types

- 1. Hard Alkalinity > 150mg
- 2. Soft Alkalinity < 100mg

Nutrition for plant growth stages

- Nutrient ratios affect growth
- Ratio of Nitrogen to Potassium
- High Nitrogen promotes growth.
- Softer foliage
- High Potassium promotes harder compact growth and flowering.
- Potassium increases resistance to Biotic & Abiotic stresses. Low K leads to poor Frost resistance
- A complete range of essential nutrients still needs to be applied
- Check water quality and apply Hard Soft water feeds for optimum nutrient availability in your water.

Irrigation

- Different compositions of the growing media require different methods of irrigation.
- Get used to the 'new requirements' of irrigation in your pots, when you make changes.
- Less water-holding capacity means quicker drying out
- Aim for even moisture in the root-zone
- The plant always needs water for the absorption and transport of

Water management

Irrigation Tips

- Add extra wetting agent, such as H²Gro to maximise irrigation efficiency and save water;
- Use shorter more frequent irrigation cycles;
- Monitor pot moisture levels to manage irrigation effectively
- Media may appear dry on the surface but still be moist in the pot
- A thorough first couple of waterings is essential to activate the wetting agent

Nitrogen and peat reduction

N losses by leaching

N losses by immobilization - Barks and woodfibres

Nitrogen Deficiency

N losses by leaching

lower nutrient buffering of media

Nitrate easily leached due to negative charge (-)

more watering

Calcium Nitrate

Calcium nitrate	200g
15.5 % N	31 mg
18.9 % Ca	38 mg

Supplementary Nitrogen products for peat reduced growing media

Use these products alongside your standard Osmocote or water soluble program

Growing Solutions - Fertilisers

ICL team work closely with growers to match nutrition plan to nursery requirements:

Look at a large number of factors:

Crops and timings

Specific recommendation or general

Sustainable Growing media – Peat reduced / Peat Free

Water quality

Irrigation type

Nursery technical level

Nutrition type CRF / WSF or combination

People

Fertiliser recommendations

pH* is key to nutrient availability

* (water / Growing Media)

Keep nutrients in balance

Potassium interactions

Tools

Angelaweb3.0

Angelaweb3.0

Choose the best longevity and rate of Osmocote

Based on your potting date, sales period and local climate data

CRF Simulation

Angelaweb3.0

Osmocote[®] 5

CRF Simulation

Birmingham

Angelaweb3.0

Plant Needs

Review current Grower nutrition plan

Angelaweb3.0

Select Growth Stage

Crop: Cyclamen

- Vegetative phase
- Generative / final

Plant Needs

ICL Growing Solution

Sustainable Growing Media

Increasing Peat reduction

Less Nitrogen stability Lower water holding Greater leaching of nutrients Feed earlier WSF/ 25% higher rate

Traditional NPK base fertilisers (Pg mix) leach easily

Csmocote® **Start**

CRF & SR Nitrogen

Csmoform° High N

Sustainable Growing Media

Match Plant demand to fertiliser release

Typicallly higher rates with Peat Free + 25%

Improve available water and rewetting

Major Nutrients - Nitrogen

Role: Building block of proteins

Deficiency: Pale new growth, enhanced rooting

Older Leaf reddening.

Toxicity: Very blue green tissue, Soft growth

susceptible to disease

30% Fibagro[®]

Csmocote[®] 5

Hi2Gro®

30% Fibagro

Csmocote[®]
5
Hi2Gro[®]

Minor Nutrients

Minor Nutrients - Calcium

Role: Cell walls, Quality element: improves shelf life, disease and stress resistance

Deficiency: Tip burning in young leaves. Risk in Soft water and Peat Free media. Common with high humidity.

Toxicity: Stunted growth deficiency of Magnesium

Immobile

Minor Nutrients - Magnesium

Role: Chlorophyll, Cell walls

Deficiency: Intervienal chlorosis in older leaves. Risk in Soft water and Peat Free media

Toxicity: Not common

Trace Elements and pH

Trace Elements

Role in Protein and Photosynthesis synthesis

Deficiency: striking interveinal chlorosis of young tissue. Poor availability as pH rises

Toxicity: Excessive dark green foliage and burning

Trace Elements

Role: Enzyme systems, Nitrogen transformation, Chlorophyll

Deficiency: Interveinal chlorosis in young leaves, similar to Fe but also necrotic spots.

Toxicity: Chlorotic followed by necrotic parts on leaves, often start at older leaves followed by younger parts, Sometimes purple brown veins or spots.

Immobile

Peat Free Mixes 2023

Peat Free Mixes 2023

Peat Free Mixes 2023

Things to remember when growing in peat reduced and peat free

- 1. Adapt irrigation to reflect the potentially lower water holding capacity of peat free substrates
- 2. Extra nitrogen will be required to compensate for nitrogen lock up with the peat free growing medium, particularly if containing wood based products
- 3. Peat Free materials generally have a much lower buffering capacity than peat growing media, meaning nutrients are easily leached
- 4. Peat free growing media require less lime to correct the pH and provides less calcium and magnesium which needs to supplementing in other ways
- 5. Before growing in peat free growing media it is important to review the nutrition of the mixes, typically 25% higher rates of fertliser needed.

AICL

Thank you andrew.wilson@icl-group.com

